Running DeepSeek Locally on Windows (All Versions)

The hardware requirements for running DeepSeek locally depend on the model size. Below is a table outlining the minimum and recommended hardware for each version.


DeepSeek Model Hardware Requirements

ModelVRAM (GPU)RAM (System)CPUStorage (SSD/NVMe)Recommended GPU
1.5B4GB+16GBIntel i5 / Ryzen 550GBNVIDIA RTX 2060
7B16GB+32GBIntel i7 / Ryzen 7100GBNVIDIA RTX 3090 / 4090
8B24GB+64GBIntel i9 / Ryzen 9150GBNVIDIA RTX 4090 / A100
14B32GB+128GBIntel i9 / Ryzen 9200GBNVIDIA A100 (40GB)
32B48GB+256GBAMD EPYC / Xeon400GBNVIDIA H100 (80GB)
70B80GB+512GBAMD EPYC / Xeon1TB2× NVIDIA H100 (80GB)
671B512GB+ (Multiple GPUs)1.5TB+AMD EPYC / Xeon10TB+8× NVIDIA H100 (80GB)

Installation Steps for Windows

  1. Install Dependencies
  • Install Python 3.9+
  • Install CUDA 11.8+ (Ensure GPU compatibility)
  • Install cuDNN (For better performance)
  1. Set Up Virtual Environment
   python -m venv deepseek_env
   deepseek_env\Scripts\activate
  1. Install PyTorch with CUDA Support
   pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
  1. Install DeepSeek
   pip install deepseek
  1. Run DeepSeek Locally
   python -m deepseek --model deepseek-7b

Key Notes:

  • 1.5B to 8B models can run on high-end gaming GPUs (RTX 3090/4090).
  • 14B and above require professional AI hardware (A100, H100).
  • 32B+ models may need multiple GPUs with tensor parallelism.
  • 671B model is too large for local use, requiring cloud clusters.

What model do you plan to use?

Was this article helpful?
YesNo

Similar Posts