Setting up and running DeepSeek-R1 671B with Ollama, Docker, and WebUI on Windows requires a robust hardware setup, proper software configuration, and careful optimization. Follow this step-by-step guide to deploy it effectively.


Prerequisites

1. Hardware Requirements

Ensure your system meets the minimum hardware requirements for DeepSeek-R1 671B:

  • CPU: High-end multi-core processor (AMD Threadripper / Intel Xeon)
  • RAM: 1TB+ DDR5 ECC
  • GPU: Multi-GPU setup, such as:
  • 20x Nvidia RTX 3090 (24GB each)
  • 10x Nvidia RTX A6000 (48GB each)
  • Storage: At least 10TB+ NVMe SSD
  • Power & Cooling: Sufficient power supply and cooling solutions for multi-GPU operation

2. Install Required Software

Step 1: Install Docker Desktop on Windows

  1. Download Docker Desktop from Docker’s official site.
  2. Enable WSL 2 integration during installation.
  3. Verify installation by running:
   docker --version
  1. Make sure your system meets the Docker resource requirements (allocate at least 512GB RAM & multiple GPUs in Docker settings).

Step 2: Install Ollama

  1. Download and install Ollama from Ollama’s official site.
  2. Verify the installation:
   ollama --version

Step 3: Pull the DeepSeek-R1 671B Model

  1. Pull the DeepSeek-R1 model using Ollama:
   ollama pull deepseek-r1:671b

Step 4: Install WebUI for DeepSeek-R1

  1. Clone the DeepSeek WebUI repository:
   git clone https://github.com/deepseek-ai/webui.git
   cd webui
  1. Build and run WebUI inside Docker:
   docker build -t deepseek-webui .
   docker run --gpus all -p 7860:7860 -v deepseek_cache:/root/.cache deepseek-webui

3. Running DeepSeek-R1 671B

Option 1: Run Using Ollama

ollama run deepseek/deepseek-r1-671b

Option 2: Run with WebUI

  1. Open your browser and navigate to:
   http://localhost:7860
  1. Start interacting with DeepSeek-R1 671B via the web interface.

4. Optimizations for Performance

  • Enable CUDA & TensorRT: Ensure NVIDIA CUDA & TensorRT are installed for better GPU acceleration.
  • Allocate More RAM to Docker: Modify Docker settings to allocate at least 512GB RAM.
  • Use Multi-GPU Scaling: Leverage NVIDIA NCCL for better scaling across multiple GPUs.
  • Enable Shared Memory in Docker: Use --shm-size=512g to increase shared memory:
  docker run --gpus all --shm-size=512g -p 7860:7860 deepseek-webui

Conclusion

You have now set up DeepSeek-R1 671B on Windows using Ollama, Docker, and WebUI. This setup ensures a seamless AI model deployment while leveraging your hardware efficiently.

Was this article helpful?
YesNo

Similar Posts