Deploying DeepSeek-R1 671B on Ubuntu using Ollama, Docker, and WebUI requires a high-end multi-GPU system, proper software setup, and optimizations. Follow this step-by-step guide to set it up efficiently.


1. System Requirements

Minimum Hardware Requirements

To run DeepSeek-R1 671B, you need an extreme hardware setup:

  • CPU: AMD Threadripper / Intel Xeon
  • RAM: 1TB+ DDR5 ECC
  • GPU: Multi-GPU setup with at least 480GB VRAM, such as:
  • 20x Nvidia RTX 3090 (24GB each)
  • 10x Nvidia RTX A6000 (48GB each)
  • Storage: 10TB+ NVMe SSD
  • Power & Cooling: Proper PSU and cooling for multi-GPU workloads

Note: Running DeepSeek-R1 671B requires a distributed multi-GPU system due to its extreme resource needs.


2. Install Required Software

Step 1: Update Ubuntu & Install Essential Packages

sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential git curl wget python3 python3-pip

Step 2: Install NVIDIA Drivers, CUDA, and cuDNN

Since DeepSeek-R1 relies heavily on GPU acceleration, install the latest NVIDIA drivers.

1. Install NVIDIA Drivers

sudo apt install -y nvidia-driver-535
reboot

After rebooting, verify installation:

nvidia-smi

2. Install CUDA 12.3

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-repo-ubuntu2204_12.3.0-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204_12.3.0-1_amd64.deb
sudo apt update
sudo apt install -y cuda

3. Install cuDNN

sudo apt install -y libcudnn8 libcudnn8-dev

Step 3: Install Docker & NVIDIA Container Toolkit

DeepSeek-R1 runs inside a Docker container.

1. Install Docker

sudo apt install -y docker.io
sudo systemctl enable docker
sudo systemctl start docker

2. Install NVIDIA Container Toolkit

sudo apt install -y nvidia-container-toolkit
sudo systemctl restart docker

3. Verify NVIDIA Docker Support

docker run --rm --gpus all nvidia/cuda:12.3.0-base nvidia-smi

If successful, you should see your NVIDIA GPUs listed.


Step 4: Install Ollama

Ollama is optimized for LLM inference.

curl -fsSL https://ollama.ai/install.sh | sh

Verify Installation

ollama --version

3. Download and Run DeepSeek-R1 671B

Step 1: Pull the DeepSeek-R1 Model

ollama pull deepseek/deepseek-r1-671b

This is a massive download (~10TB), so ensure you have enough storage.

Step 2: Run DeepSeek-R1 671B with Ollama

ollama run deepseek/deepseek-r1-671b

4. Set Up WebUI for DeepSeek-R1

To interact with DeepSeek-R1 via a browser-based UI, install WebUI.

Step 1: Clone WebUI Repository

git clone https://github.com/deepseek-ai/webui.git
cd webui

Step 2: Build & Run WebUI with Docker

  1. Build WebUI Docker Image
   docker build -t deepseek-webui .
  1. Run WebUI Container
   docker run --gpus all --shm-size=1T -p 7860:7860 -v deepseek_cache:/root/.cache deepseek-webui

--shm-size=1T increases shared memory for better model execution.

Step 3: Access WebUI

  • Open your browser and go to:
  http://localhost:7860
  • Now, you can interact with DeepSeek-R1 671B via WebUI.

5. Performance Optimization

Enable Multi-GPU Scaling

For efficient GPU communication, set NVIDIA NCCL:

export NCCL_P2P_DISABLE=0
export NCCL_IB_DISABLE=0
export NCCL_DEBUG=INFO

Allocate More Memory to Docker

Modify the Docker run command for better performance:

docker run --gpus all --shm-size=2T -p 7860:7860 deepseek-webui

Run in Background with Logs

nohup ollama run deepseek/deepseek-r1-671b > deepseek.log 2>&1 &

6. Conclusion

You have successfully set up DeepSeek-R1 671B on Ubuntu using Ollama, Docker, and WebUI. This setup provides GPU acceleration, a scalable WebUI, and optimized inference performance.

Next Steps

  • Monitor GPU performance using nvidia-smi
  • Optimize memory allocation for better efficiency
  • Experiment with smaller DeepSeek models for faster inference

Was this article helpful?
YesNo

Similar Posts