Running DeepSeek LLM locally on a Windows machine requires setting up the model using compatible frameworks like Ollama, LM Studio, or GPTQ-based tools. Here’s how you can do it, along with the hardware requirements.
1. Hardware Requirements
DeepSeek models come in different sizes. Here’s a breakdown of the recommended hardware:
Model Size | RAM (Minimum) | VRAM (GPU) | Storage | CPU Requirement |
---|---|---|---|---|
DeepSeek 7B | 16GB | 6GB (RTX 3060 or better) | 15GB | 6-core or better |
DeepSeek 67B | 128GB | 48GB (RTX 4090 or A100) | 120GB | High-end CPU (Threadripper/Xeon) |
2. Setting Up DeepSeek Locally on Windows
Method 1: Using LM Studio (Easiest)
- Download LM Studio
👉 Get it here - Install and Open LM Studio
- Download DeepSeek Model (GGUF format)
- Search for DeepSeek 7B GGUF (smaller size, runs on CPU/GPU)
- Run the Model Locally
- Load it in LM Studio and interact via the interface.
Method 2: Using Ollama (For CLI Users)
- Install Ollama
👉 Download here - Open Command Prompt and Install DeepSeek
ollama pull deepseek-ai/deepseek-coder
- Run the Model
ollama run deepseek-coder
Method 3: Using GPTQ for GPU Acceleration
- Install Python & CUDA Toolkit (For NVIDIA GPUs)
- Set Up
text-generation-webui
git clone https://github.com/oobabooga/text-generation-webui.git
cd text-generation-webui
pip install -r requirements.txt
- Download a GPTQ-optimized DeepSeek Model (from Hugging Face)
- Run the Web UI
python server.py
Which Method Should You Choose?
- For beginners: Use LM Studio (easy GUI setup)
- For CLI users: Use Ollama
- For GPU acceleration: Use GPTQ + text-generation-webui