Running DeepSeek LLM locally on a Windows machine requires setting up the model using compatible frameworks like Ollama, LM Studio, or GPTQ-based tools. Here’s how you can do it, along with the hardware requirements.


1. Hardware Requirements

DeepSeek models come in different sizes. Here’s a breakdown of the recommended hardware:

Model SizeRAM (Minimum)VRAM (GPU)StorageCPU Requirement
DeepSeek 7B16GB6GB (RTX 3060 or better)15GB6-core or better
DeepSeek 67B128GB48GB (RTX 4090 or A100)120GBHigh-end CPU (Threadripper/Xeon)

2. Setting Up DeepSeek Locally on Windows

Method 1: Using LM Studio (Easiest)

  1. Download LM Studio
    👉 Get it here
  2. Install and Open LM Studio
  3. Download DeepSeek Model (GGUF format)
  • Search for DeepSeek 7B GGUF (smaller size, runs on CPU/GPU)
  1. Run the Model Locally
  • Load it in LM Studio and interact via the interface.

Method 2: Using Ollama (For CLI Users)

  1. Install Ollama
    👉 Download here
  2. Open Command Prompt and Install DeepSeek
   ollama pull deepseek-ai/deepseek-coder
  1. Run the Model
   ollama run deepseek-coder

Method 3: Using GPTQ for GPU Acceleration

  1. Install Python & CUDA Toolkit (For NVIDIA GPUs)
  2. Set Up text-generation-webui
   git clone https://github.com/oobabooga/text-generation-webui.git
   cd text-generation-webui
   pip install -r requirements.txt
  1. Download a GPTQ-optimized DeepSeek Model (from Hugging Face)
  2. Run the Web UI
   python server.py

Which Method Should You Choose?

  • For beginners: Use LM Studio (easy GUI setup)
  • For CLI users: Use Ollama
  • For GPU acceleration: Use GPTQ + text-generation-webui

Was this article helpful?
YesNo

Similar Posts