Deploying DeepSeek-R1 70B on Linux with Ollama, Docker, and WebUI requires powerful hardware and the right software stack. This guide covers hardware requirements, installation steps, and optimizations for smooth operation.


1. Hardware Requirements

ComponentMinimum RequirementRecommended Requirement
CPUAMD Ryzen 9 / Intel i9AMD Threadripper / Intel Xeon
RAM128GB DDR4256GB+ DDR5 ECC
GPU2x NVIDIA RTX 3090 (24GB each)4x NVIDIA RTX 4090 / A6000 (48GB each)
VRAM48GB minimum96GB+ (Multi-GPU NVLink)
Storage2TB NVMe SSD4TB+ NVMe SSD (PCIe 4.0)
Power Supply1000W+1600W+ (for multi-GPU)
CoolingHigh-end air coolingCustom water cooling for GPUs

Note: Running DeepSeek-R1 70B on a single GPU is not feasible due to high VRAM demands. A multi-GPU setup (NVLink recommended) is required.


2. Install Required Software

Step 1: Update Ubuntu & Install Dependencies

sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential git curl wget python3 python3-pip

Step 2: Install NVIDIA Drivers, CUDA & cuDNN

1. Install NVIDIA Drivers (Latest Stable Version)

sudo apt install -y nvidia-driver-535
reboot

Verify installation:

nvidia-smi

2. Install CUDA 12.3

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-repo-ubuntu2204_12.3.0-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204_12.3.0-1_amd64.deb
sudo apt update
sudo apt install -y cuda

3. Install cuDNN

sudo apt install -y libcudnn8 libcudnn8-dev

3. Install Docker & NVIDIA Container Toolkit

Step 1: Install Docker

sudo apt install -y docker.io
sudo systemctl enable docker
sudo systemctl start docker

Step 2: Install NVIDIA Container Toolkit

sudo apt install -y nvidia-container-toolkit
sudo systemctl restart docker

Step 3: Verify NVIDIA Docker Support

docker run --rm --gpus all nvidia/cuda:12.3.0-base nvidia-smi

If successful, you should see your NVIDIA GPUs listed.


4. Install Ollama & Pull DeepSeek-R1 70B

Step 1: Install Ollama

curl -fsSL https://ollama.ai/install.sh | sh

Verify installation:

ollama --version

Step 2: Pull the DeepSeek-R1 70B Model

ollama pull deepseek/deepseek-r1-70b

This is a large model (~5TB), ensure you have sufficient storage.

Step 3: Run DeepSeek-R1 70B with Ollama

ollama run deepseek/deepseek-r1-70b

5. Set Up WebUI for DeepSeek-R1 70B

Step 1: Clone WebUI Repository

git clone https://github.com/deepseek-ai/webui.git
cd webui

Step 2: Build & Run WebUI with Docker

  1. Build WebUI Docker Image
   docker build -t deepseek-webui .
  1. Run WebUI Container
   docker run --gpus all --shm-size=512G -p 7860:7860 -v deepseek_cache:/root/.cache deepseek-webui

--shm-size=512G increases shared memory for better model execution.

Step 3: Access WebUI

  • Open your browser and go to:
  http://localhost:7860
  • Now, you can interact with DeepSeek-R1 70B via WebUI.

6. Performance Optimization

Enable Multi-GPU Scaling (NCCL)

export NCCL_P2P_DISABLE=0
export NCCL_IB_DISABLE=0
export NCCL_DEBUG=INFO

Allocate More Memory to Docker

docker run --gpus all --shm-size=1T -p 7860:7860 deepseek-webui

Run in Background with Logs

nohup ollama run deepseek/deepseek-r1-70b > deepseek.log 2>&1 &

7. Conclusion

You have successfully set up DeepSeek-R1 70B on Linux using Ollama, Docker, and WebUI.

Next Steps:

  • Monitor GPU performance using nvidia-smi
  • Optimize memory allocation for better efficiency
  • Experiment with smaller DeepSeek models for faster inference

Was this article helpful?
YesNo

Similar Posts