1. Introduction

DeepSeek Coder is a powerful open-source code model designed for project-level code generation and infilling. It supports multiple programming languages and achieves state-of-the-art results in code completion tasks.

2. Features of DeepSeek Coder

  • Trained on 2T tokens (87% code, 13% natural language in English & Chinese).
  • Available in multiple sizes (1.3B, 5.7B, 6.7B, and 33B parameters).
  • 16K context window for handling large projects.
  • Supports project-level code completion & infilling.

3. How to Use DeepSeek Coder 1.3B

A. Installing Required Dependencies

To use the model in Python, install the necessary libraries:

pip install transformers torch

B. Loading the Model in Python

Use the transformers library to load the model:

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    "deepseek-ai/deepseek-coder-1.3b-instruct",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16
).cuda()  # Use GPU for faster inference

C. Running Code Generation

You can prompt the model to generate code. Here’s an example using QuickSort:

messages = [
    {"role": "user", "content": "Write a quick sort algorithm in Python."}
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(
    inputs,
    max_new_tokens=512,
    do_sample=False,
    top_k=50,
    top_p=0.95,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id
)

print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

This will generate a Python implementation of QuickSort.


4. Running DeepSeek Coder Locally

If you want to run the model efficiently on your system, consider using GGUF format models with llama.cpp or text-generation-webui.

A. Running with llama.cpp

./main -m deepseek-coder-1.3b-instruct.gguf -p "Write a Python function to check if a number is prime."

B. Running with text-generation-webui

  1. Download the GGUF model from DeepSeek Repository.
  2. Load it into text-generation-webui and start inference.

5. License and Commercial Use

  • The code is licensed under MIT.
  • The model has a separate Model License allowing commercial use.

6. Conclusion

DeepSeek Coder 1.3B is a powerful AI coding assistant that supports code generation, completion, and infilling. It can be run on your local machine with PyTorch or optimized with GGUF format for efficiency.

Was this article helpful?
YesNo

Similar Posts